Abschlussklausur LV 444.152 VO Medizinische Informatik – Andreas Holzinger

Vor- und Zuname →		Ausweis ok?	
Matrikelnummer →			
Studienkennzahl \rightarrow			
Semesteranzahl →			
Prüfungsdatum →	4		

Welcome to the final exam of the lecture "Medical Informatics"!

This exam consists of a sum of 30 questions in 3 different question blocks. You can reach a maximum of 100 credit points, which will be used for calculation of your final grade:

Fail	Poor	Average	Good	Excellent!
Nicht genügend	Genügend	Befriedigend	Gut	Sehr gut
5	4	3	2	1
0-50	51-69	70-79	80-89	90-100

Before you start, please answer some general questions.

	I feel well a	nt the moment.	
Yes, I fully agree ①		3	No, I fully disagree -45

	Medical Info	ormatics is a di	fficult subject.	
Yes, I fully agree	·	3		No, I fully disagree ⑤

	Medical In	formatics is ve	ry interesting.	
Yes, I fully agree	②	3		No, I fully disagree \$

Good luck! © ...

A) Yes/No decision question block

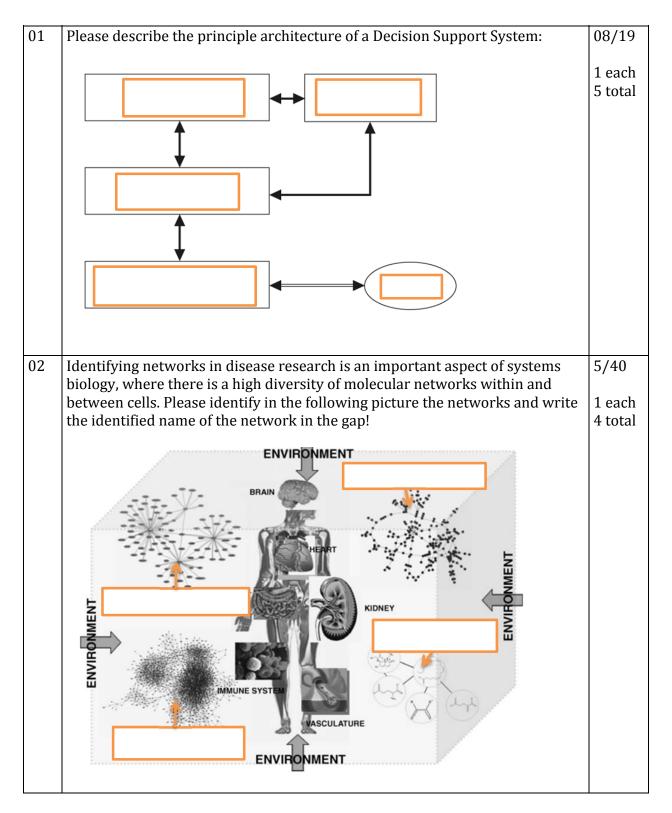
Please check the following sentences and decide if the sentence is true = YES; or false = NO; for each correct answer you will be awarded 2 credit points.

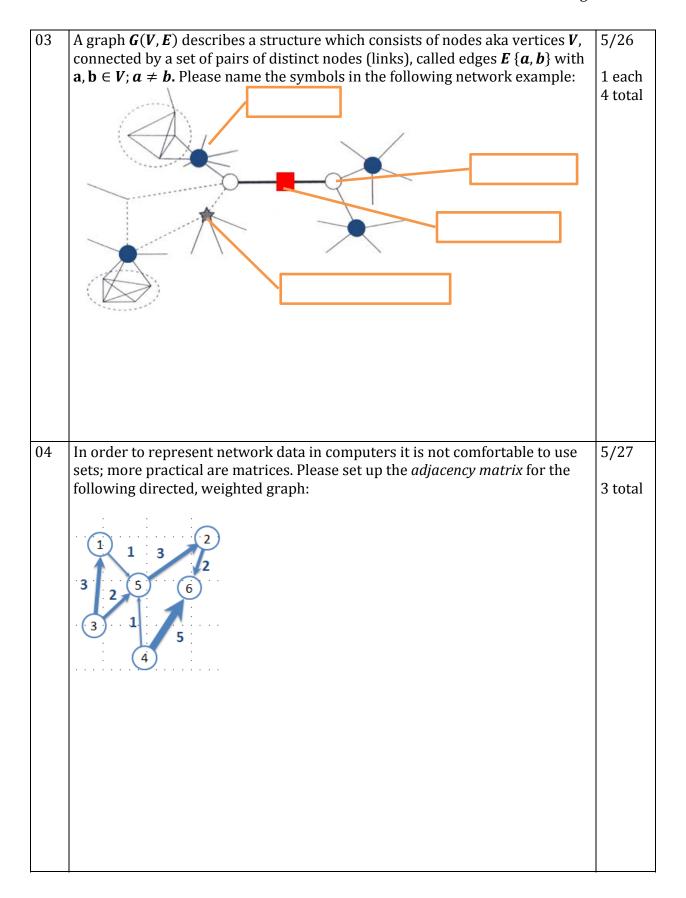
01	1-D data may consist of a string of 0-D data (e.g. integers, letters,	☐ Yes	02/10
	Booleans); a typical example are sequences representing	□ No	2 total
	nucleotide bases and amino acids.		
02	Heart rate variability (HRV) artifacts result from noise through	☐ Yes	02/62
	errors in the location of the instantaneous heart beat and cause unwanted biases in HRV calculations.	□ No	2 total
03	Highly structured data contains low information entropy, i.e. $H = 0$	☐ Yes	02/53
	if there is no uncertainty, if everything is in order; consequently H can be useful to look for regularities in medical data.	□ No	2 total
04	The Unified Medical Language System (UMLS) is a long-term	☐ Yes	03/11
	project to develop resources for information retrieval, and is to date the mostly used standardized data set in clinical practice.	□ No	2 total
05	Biomedical databases are libraries that collect data from scientific	☐ Yes	04/32
	experiments and computational analyses. A typical example for	□ No	2 total
	such a database is OMIM (Online Mendelian Inheritance in Man).		
06	Emergence is a key concept and describes the fact that a complex	☐ Yes	05/25
	biological system maintains their main functions even under perturbations imposed by the environment.	□ No	2 total
07	An example for the application of supervised learning is when	☐ Yes	06/15
	multiple tumor samples are clustered into groups based on overall similarity of their gene expression profiles	□ No	2 total
08	Let $U \subseteq X$ denote this risk factors and $V = X \setminus U$ the complement.	☐ Yes	07/29
	The risk of immediate death can be expressed as: $p(health(t) = h X) = p(h V) \prod_{U \in U} p(health(t) \neq death U, health(t - 1))$	□ No	2 total
09	In a rule based expert system the certainty factor CF of an element	☐ Yes	08/15
	is calculated by: CF[h] = MB[h] - MD[h]; CF is negative, if more evidence is given for a hypothesis, otherwise CF is positive.	□ No	2 total
10	RadViz is a radial visualization method, which maps a set of m-	☐ Yes	09/43
	dimensional points in the two-dimensional space, thereby	□ No	2 total
	following Hooke's law in mechanics.		

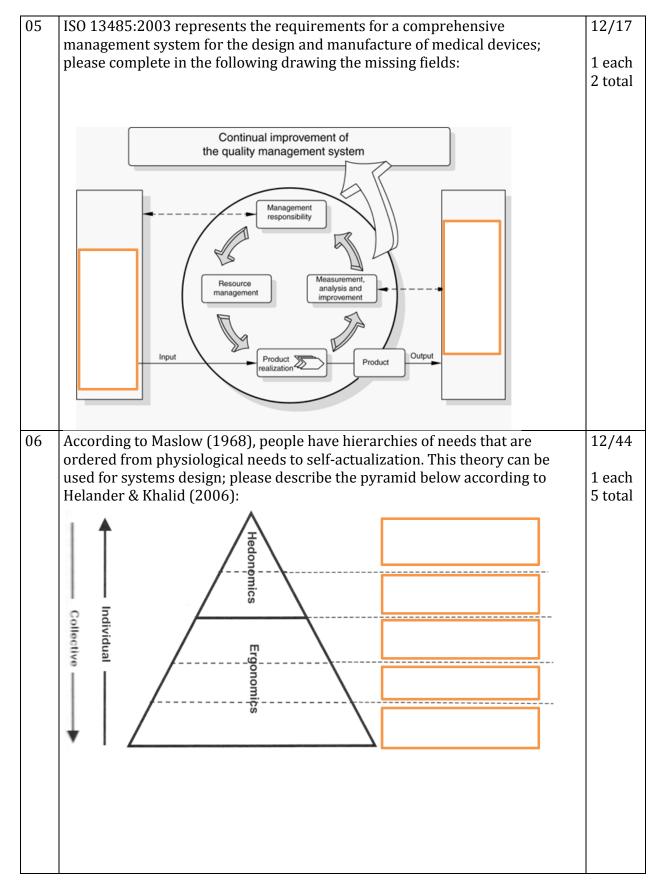
Sum of Question Block A (max. 20 points)
--

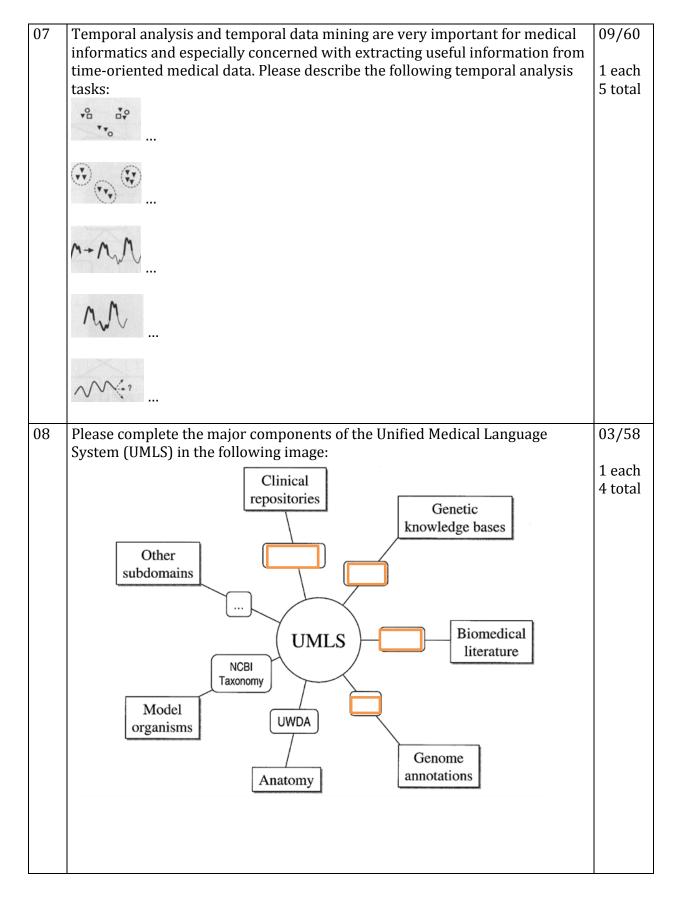
B) Multiple choice question block (MCQ)

Note: The following questions are composed of two parts: the stem, which identifies the question or problem and a set of alternatives which can contain 0, 1, 2, 3 or 4 correct answers to the question, along with a number of distractors that might be plausible – but are incorrect. Please **select the correct answers** by ticking \boxtimes - and do not forget that every question can have 0, 1, 2, 3 or 4 correct answers. Each question will be awarded 4 points *only if everything is correct*.


01	In the computational space C	02/9
01	☐ a) information is data which is processed to be useful, providing answers	4 total
	to so-called who-what-where-when questions.	4 total
	b) information is data which represents the results of a computational	
	process, e.g. statistical analysis, assigning meaning to data.	
	c) knowledge is the application of both data and information, providing answers to so-called how-questions.	
	d) knowledge is data that represents the results of a computer-simulated	
	cognitive process, including perception, learning, association and reasoning.	
02	Molecular medicine	01/10
	a) emphasizes the importance of previous concepts and observation on	4 total
	patients and their organs.	1 00 001
	□ b) focuses on cellular phenomena and interventions, rather than	
	previous conceptual and observational focus on patients and their organs.	
	c) emphasizes cellular phenomena but does not focus on interventions.	
	d) aims to identify genetic errors for the cause of diseases.	
03	Within the future p-Health model, so called "personalized healthcare	01/17
	decisions" should be made	4 total
	☐ a) participatory, jointly together by individuals and relevant	
	practitioners.	
	b) based on a mixture of individualized and population approaches.	
	c) constantly, based on the health information accumulated up-to-date.	
	d) personalized, based on individualized modeling from genomic to	
	system levels.	
04	The Quality Era of biomedical informatics is characterised by	01/29
	☐ a) focus on data acquisition, storage and accounting.	4 total
	□ b) health care networks, telemedicine and CPOE-Systems.	
	☐ c) pervasive and ubiquitous computing.	
	d) patient empowerment and individual molecular medicine.	
05	Medical data standardization refers to	03/11
	☐ a) ensuring that information is interpreted by all end users with the same	4 total
	understanding.	
	□ b) supporting reusability of the data.	
	c) the terminologies that are used to represent the data.	
	d) how knowledge is represented in a health information system.	


Abschlussklausur LV 444.152 VO Medizinische Informatik – Andreas Holzinger


0.6	Information metricular delain the health and demain sold land	04/41
06	Information retrieval models in the health care domain, which are following	04/41
	the concept of "reasoning with uncertainty" apply	4 total
	probability theories.	
	graph theories.	
	Algebra calculus.	
	☐ Fuzzy set theories.	
07	Threats to technical dependability in medical information systems include	11/28
	🗖 a) faults and failures.	4 total
	☐ b) fault forecasting and prevention.	
	☐ c) errors and integrity.	
	□ d) confidentiality and reliability.	
08	Star plot diagrams are very useful in medical data visualization, they	09/47
	\square a) arrange N axes on a circle in \mathbb{R}^2 .	4 total
	b) map a single point u in the plane of anchors.	
	\square c) are representing data points along a line $\ell \subset \mathbb{R}^n$.	
	\Box d) are the oldest, point-based techique.	
09	Support Vector Machines are an important concept in medical informatics	6/58
	a) to analyze data and recognize patterns, used for classification and	4 total
	regression analysis.	1 00 0011
	\Box b) that can easily be learned in incremental fashion due to its	
	nondeterministic algorithm.	
	\Box c) having the advantage that by using kernels very complex functions can	
	be learned.	
	d) generalizing principally well, but do not have a strong mathematical	
	foundation.	
10	In the framework for understanding human error in the medical domain,	11/19
10	includes	4 total
		4 total
	a) working memory constraints.	
	b) psychomotor variabilities.	
	c) novel and unanticipated events.	
	d) shiftwork and workgroup culture.	<u> </u>


Sum of Question Block B (max. 40 points)	

C) **Free recall block** – please follow the instruction below, at each question you will be assigned certain credit points (partial points may be given here).

09	The Medical Subject Headings (MeSH) contain two organzisation files: 1) an alphabetic list with bags of synonymous and related terms, called records, and 2) a hierarchical organization of descriptors associated to these terms. We consider that a term is a set of words (no word sequence order), that is: $t = \{w_1,, w_{ t }\}$ where w is a word How is a bag of terms defined:	03/53 3 total
10	Please describe the General Model of Human Information Processing – fill in the gaps: Response Selection Response Execusion	07/10 1 each 5 total

Abschlussklausur LV 444.152 VO Medizinische Informatik – Andreas Holzinger

That's it! Thank you for taking this exam, please fill out the final questions

I feel well at the moment.	
Yes, I fully agree ①	No, I fully disagree ⑤
Medical Informatics is a difficult subject.	
Yes, I fully agree ①	No, I fully disagree \$
Medical Informatics is very interesting.	
Yes, I fully agree ①	No, I fully disagree ⑤

Best success for your further studies $\ \odot \ \dots$

Andreas Holzinger